首页> 外文OA文献 >Improving the Performance of PieceWise Linear Separation Incremental Algorithms for Practical Hardware Implementations
【2h】

Improving the Performance of PieceWise Linear Separation Incremental Algorithms for Practical Hardware Implementations

机译:提高分片线性分离增量的性能   实用硬件实现的算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we shall review the common problems associated with PiecewiseLinear Separation incremental algorithms. This kind of neural models yield poorperformances when dealing with some classification problems, due to theevolving schemes used to construct the resulting networks. So as to avoid thisundesirable behavior we shall propose a modification criterion. It is basedupon the definition of a function which will provide information about thequality of the network growth process during the learning phase. This functionis evaluated periodically as the network structure evolves, and will permit, aswe shall show through exhaustive benchmarks, to considerably improve theperformance(measured in terms of network complexity and generalizationcapabilities) offered by the networks generated by these incremental models.
机译:在本文中,我们将回顾与分段线性分离增量算法相关的常见问题。由于用于构造结果网络的演进方案,这种神经模型在处理某些分类问题时产生较差的性能。为了避免这种不良行为,我们将提出一个修改标准。它基于功能的定义,该功能将提供有关学习阶段网络增长过程质量的信息。随着网络结构的发展,该功能会定期进行评估,并且将通过详尽的基准测试表明,该功能将大大提高这些增量模型生成的网络所提供的性能(以网络复杂性和泛化能力衡量)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号